
Simple OCaml Introduction

Florian E. Muecke

August 17, 2006

Abstract

This is a simple Objective CAML introduction that shows some basic
elements of this object oriented functional programming language.

1 Introduction

A complete tutorial can be found here: www.ocaml-tutorial.org/.

2 Examples

Brackets are used in OCaml only to pack arguments together, never to seperate
the function from its parameters like in C. Comments are also defined by brackets
with stars like (* this is a comment *). Complete instructions (functions)
should always end with ‘;;’.

2.1 A simple function

Program:
let average a b = (a +. b) /. 2.0;;
Output:
val average : float -> float -> float = <fun>
Run:
average 3.0 4.0;;
- : float = 3.5

The +. and \. in the function definition means that the arguments a and b
have to be of type float. In OCaml there are different functions to convert one
type to another (like explicit type casts in C): float of int, int of float,
char of int, int of char, string of int and so on.

2.2 Recursive function

You want to define a recursive function, you have to do so using let rec.

1

http://www.ocaml-tutorial.org

�
l e t r e c range a b =

i f a > b then []
e l s e a : : range (a+1) b
; ;� �

2.3 Polymorphic functions (with output) �
l e t r e tu rnS t r i ng x = ”Hossa ! ” ; ;
val returnString : ’a −> string = <fun>
re tu rnS t r i ng 5 ; ;
− : string = ”Hossa ! ”� �
2.4 References

You can get the reference of an object x by using ref x. You can assign
references with ‘:=’ like in x := "abc" and dereference objects by using an ‘!’
like in !x.

2

	Introduction
	Examples
	A simple function
	Recursive function
	Polymorphic functions (with output)
	References

